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Ion mobility measurements can be used to obtain structural information for large polyatomic ions in the gas phase.
The methods are flexible and can be applied to a wide range of chemical systems. This article reviews the develop-
ment of these methods and discusses recent applications to complex ions such as atomic clusters and large bio-

molecules.
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INTRODUCTION

In this article we describe some of the recent work that
has been performed using ion mobility measurements to
deduce structural information for polyatomic ions.
Determining the structure of a polyatomic ion in the
gas phase is a challenging problem, that is usually
approached by indirect methods such as dissociation or
reactivity studies. lon mobility measurements have
recently emerged as a technique that can provide more
direct information about the geometries of large polya-
tomic ions. The structural information obtained from
these studies is not as detailed as information from
high-resolution spectroscopic studies, but in many cases
the types of spectroscopic studies needed to provide
structural information cannot be applied to polyatomic
ions in the gas phase. While the use of ion mobility
measurements to deduce structural information has
grown in the last five years, both the experimental tech-
niques and theoretical methods employed in these
studies were largely developed over two decades ago.
The mobility of a gas-phase ion is a measure of how
rapidly it moves through a buffer gas under the influ-
ence of an electric field. Mobility measurements are per-
formed in a drift tube, which contains the buffer gas and
usually has a series of electrodes to provide a uniform
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electric field. The electric field accelerates the ions, while
collisions with the buffer gas decelerate them, leading to
a constant drift velocity, v,. The mobility, K, is the
ratio of the drift velocity to the electric field, K = vp/E,
and it contains information about the interaction
between the ion and the buffer gas. For atomic ions, the
mobility depends on the electronic state, as shown by
Rowe et al.' in 1980. For a large polyatomic ion, the
mobility depends on the average collision cross-section.
An ton with a large average cross-section undergoes
more collisions with the buffer gas and travels more
slowly than an ion with a small average collision cross-
section. Thus mobility measurements can be used to
separate ions with different geometries. For example,
Hagen? demonstrated in 1979 that structural isomers of
polycyclic aromatic hydrocarbons could be separated
by their different mobilities. This separation provides
the basis for a sensitive and selective analytical tech-
nique, ion mobility spectrometry,>* developed by
Cohen and Karasek in 1970.

Ion mobility spectrometry, or ‘plasma chromatog-
raphy’ as it was first called, uses mobility rather than
mass to separate ions. It has been used to detect drugs,
chemical warfare agents, explosives and environmental
pollutants.>® Several groups have used mobility mea-
surements to characterize the size distribution of
aerosol particles and small metal particles.”® In addi-
tion to information about ion mobilities, drift tube
studies can provide information about ion-molecule
reaction kinetics and equilibria. The injected-ion drift
tube technique, where mass-selected ions are injected
into the drift tube from an external source, was devel-
oped by Hasted and co-workers® in 1966. This tech-
nique has been used by many different groups, including
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those of Warneck, Burke, Lindinger, Johnsen and
Biondi and Arnold and co-workers, to measure mobi-
lities and study ion chemistry.'°~'® The main focus of
the early work employing this technique was to measure
mobilities and study ion-molecule reactions important
in understanding the chemistry of the upper atmo-
sphere. An advantage of the injected ion drift tube tech-
nique is that it can be used with a wide variety of
sources. The early work employed simple electron
impact sources. More recently, Jarrold and co-
workers!®!” coupled a pulsed laser vaporization source
to an injected ion drift tube apparatus and used it to
study the chemistry of mass-selected cluster ions, focus-
ing on silicon clusters. Bowers and co-workers'® subse-
quently used a similar approach to study the chemistry
of metal cluster ions and to measure the mobilities of
atomic metal ions. They found large differences in the
mobilities of metal ions in different electronic states. In
1991, this group reported ion mobility measurements
for carbon cluster ions showing that different structural
isomers could be resolved.?® This work was timely,
because of the enormous interest in fullerenes and
carbon clusters at that time and remarkable because of
the large number of isomers that were resolved. Obtain-
ing structural information for gas phase atomic clusters
is a particularly challenging problem and in addition to
carbon clusters,?°2% ion mobility measurements have
been used to study silicon clusters, germanium clusters,
aluminum clusters and a variety of metal-containing
carbon clusters. Bierbaum and co-workers®® have
recently used mobility measurements to study ion-
molecule clusters.

It is possible that ions that are generated in the
source are not in their lowest energy geometries. A
simple annealing technique makes it possible to use ion
mobility measurements to examine the isomerization
processes of a polyatomic ion.>! If the ions are injected
into the drift tube at elevated kinetic energies, collisions
with the buffer gas lead to a transient heating cycle.
While hot, the ions can isomerize and at high injection
energies they may fragment. Since the transient heating
cycle occurs close to the entrance of the drift tube, the
rest of the drift tube can be used to probe the geome-
tries of the annealed parent ion or the fragments. This
approach has been used to provide important informa-
tion about isomerization processes in carbon clusters
and the mechanism of fullerene formation.**??

While covalently bound clusters, particularly carbon
clusters, have isomers with very different shapes and
hence very different mobilities, metal clusters, ionic clus-
ters and other polyatomic ions generally have isomers
with similar shapes. The application of ion mobility
measurements to these species is hindered by the low
resolution available in injected ion drift tube experi-
ments. To overcome this problem, Dugourd er al’*
have recently constructed a high-resolution ion mobility
apparatus with a resolving power over a order of mag-
nitude better than available from the previous injected
jon drift tube experiments. In order to achieve the
higher resolving power, it is necessary to operate with
much stronger drift fields and higher buffer gas pres-
sures. The resulting experimental configuration has
much in common with the ion mobility spectrometers
developed for analytical applications in the 1970s. With
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the increased resolving power, many more structural
isomers have been resolved, even for carbon clusters.
Another exciting development is the recent applica-
tion of ion mobility methods to examine the conforma-
tions of peptides and proteins in the gas phase. Since
the development of suitable ionization methods,*>—37
there has been interest in examining the geometries of
large biological molecules in the gas phase.*®=*7 Several
groups have previously performed ion mobility mea-
surements for biological molecules,*33° although no
effort was made to deduce structural information in this
work. Bowers and co-workers®!=® have recently
reported ion mobility measurements for the peptide
bradykinin. The bradykinin ions for this study were
produced by matrix-assisted laser desorption/ionization
(MALDI).3” Only one structure was resolved and the
cross-sections deduced from the mobilities were essen-
tially independent of temperature. Extensive molecular
dynamics studies were performed and suggested that the
gas-phase structure of this peptide is dominated by an
intramolecular ‘solvation’ shell around the charge.®?
Clemmer, Jarrold and co-workers have performed a
series of ion mobility measurements for protein ions
produced by electrospray ionization. Electrospray ion-
ization generates protein ions in a distribution of charge
states,”* so that ion mobility measurements can be per-
formed as a function of the charge. Measurements have
now been performed for cytochrome c¢,°°~® bovine
pancreatic trypsin inhibitor (BPTI),?” apomyoglobin,*®
lysozyme®® and ubiquitin,®' and many different confor-
mations have been resolved. In addition, the ‘denatur-
ation’ and refolding of these gas-phase proteins has
been examined using collisional heating and proton
stripping reactions to manipulate the charge state.

EXPERIMENTAL CONSIDERATIONS

Mobilities are measured by determining the amount of
time it takes for a short packet of ions to travel through
the drift tube. Since the mobility depends on the buffer
gas number density, reduced mobilities, scaled to the
number density at STP, are usually reported. The
reduced mobility is given by

2 2132 p
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where V is the voltage drop across the drift tube, L is its
length, tj, is the drift time, p is the buffer gas pressure in
Torr (1 Torr = 133.3 Pa) and T is the temperature of
the buffer gas. Since all the parameters in Eqn (1) can be
determined with an accuracy of better than 1%, it is not
difficult to obtain an absolute accuracy of a few percent
in ion mobility measurements and a reproducibility of
better than 1%. The parameter that determines an ion’s
energy in a drift tube is the ratio of the electric field to
the buffer gas number density, E/N. At low E/N, where
the drift velocity is small compared with thermal veloci-
ties, the mobility is independent of the field strength.
This is called the low-field limit. In the high-field limit,
where the drift velocity is much larger than thermal
velocities, the mobility depends on E/N and the ions
may align to some extent in the drift tube.®? Ion mobil-
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ity measurements that are designed to deduce structural
information should usually be performed in the low-
field regime.

If a short packet of ions is injected into the drift tube,
the flux of ions leaving the drift tube as a function of
time can be calculated from the transport equation.®?
For a single isomer the drift time distribution is given
by
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where vy, is the drift velocity, ry is the radius of the drift
tube entrance aperture, dt, P(t,) is the distribution func-
tion of the packet of ions entering the drift tube, C is a
constant and D is the diffusion constant. Under low-
field conditions D is directly proportional to K, D =
Kky T/ze,®* where ze is the charge on the ion and kg is
Boltzmann’s constant. Comparison of the measured dis-
tributions with those calculated with Eqn (2) can reveal
whether the measured peak consists of more than one
isomer. The resolution is limited by diffusion of the ion
packet as it travels through the drift tube. If two
isomers have mobilities that differ by less than the ion
packet expands, they will not be resolved. As described
by Revercomb and Mason®* in 1974, the resolving
power is given approximately by

tp [ LEze \'? )
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It is apparent from this expression that in order to
increase the resolving power it is necessary to lower the
temperature, increase the drift field or increase the
length of the drift tube. Lowering the temperature from
298 to 77 K increases the resolving power by a factor of
two. If the drift field is increased there must be a corre-
sponding increase in the buffer gas pressure in order to
keep the mobilities in the low-field limit. However, for
pressures above around 10 Torr it becomes increasingly
difficult to inject intact polyatomic ions into the drift
tube from an external source, since they must overcome
the buffer gas flowing out of the drift tube. As the buffer
gas pressure is increased, higher injection energies are
needed to inject the ions, and then they fragment. The
length of the drift tube is limited by the expansion of the
ion packet by diffusion as it travels through the drift

tube. If the drift tube is too long, the ions are lost to the
drift tube walls.

The constraints outlined in the preceding paragraph
define two basic experimental configurations for per-
forming ion mobility measurements for polyatomic
ions:

1. A low-resolution configuration, where ions are
injected into the drift tube from an external source.
With the buffer gas pressure limited to less than 10
Torr, the drift field is limited to around 10 V ¢cm ™! and
the drift tube can be up to several tens of centimeters
long. The resolving power of this configuration is
around 10-20.

2. A high-resolution configuration, where ions are
generated in a source attached directly to the drift tube.
With a buffer gas pressure of hundreds of Torr, drift
fields of hundreds of volts per centimeter can be
employed and the drift tube can be up to several meters
long. The resolving power of this configuration is
around 200--400.

The injected ion drift tube method and the selected
ion flow-drift tube developed by Howorka et al.®> fall
into the first category. An injected ion drift tube appar-
atus usually consists of a source to generate the ions, a
mass spectrometer to select a particular mass to charge
ratio, a drift tube, followed by a second mass spectro-
meter and ion detector. A wide variety of different
sources have recently been employed with this configu-
ration, including pulsed laser vaporization,'® pulsed
laser desorption,®® MALDI®! and electrospray ioniza-
tion.’> Figure 1 shows a schematic diagram of the
recently constructed injected ion drift tube apparatus of
Valentine and Clemmer.>® This apparatus is equipped
with an electrospray source. The source has a differen-
tially pumped desolvation region. A base can be added
to this region to reduce the charge on the electro-
sprayed ions through proton stripping reactions. After
passing through the desolvation region the ions enter
the vacuum chamber. They are then focused into the
drift tube. There is no initial mass selection in this
apparatus. After passing through the drift tube, the ions
are focused into a quadrupole mass spectrometer and
then detected by an off-axis collision dynode and dual
microchannel plates.

Three features of the injected ion drift tube configu-
ration deserve to be mentioned.

1. Chemical reactivity/mobility measurements. A
reagent can be introduced into the drift tube to examine
the chemical reactivity of the resolved isomers. For
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Figure 1. Schematic diagram of injected ion drift tube apparatus at the University of Indiana.
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example, this approach has been used to examine the
reactivity of silicon clusters in different geometries.®’
Recently, Valentine and Clemmer®® have used it to
examine H-D exchange in cytochrome c.

2. Collisional annealing and dissociation. As the ions
are injected into the drift tube the injection energy is
thermalized by collisions with the buffer gas. During
this process some of the injection energy is converted
into internal energy, heating the injected ion. After the
jon’s injection energy is thermalized, and further colli-
sions with the buffer gas remove the ion’s excess inter-
nal energy. While hot the ions may isomerize or, at high
injection energies, fragment. The transient heating and
cooling process occurs close to the entrance of the drift
tube, so the rest of the drift tube can be used to examine
the geometries of any new isomers or fragment ions that
are formed. Analysis of the injection energy thresholds
can provide information about the activation energies
for isomerization or dissociation.

3. Thermal annealing. By changing the temperature of
the drift tube, isomerization processes can be followed
as a function of temperature and the results used to
derive activation energies. This approach has been used
to follow the isomerization of aluminum clusters®® and,
recently, to study the thermal unfolding of gas-phase
proteins.®®

This wide variety of different ion mobility experi-
ments illustrates the enormous flexibility of the injected
ion drift tube approach.

The high-resolution configuration described above
employs much higher drift fields. However, because of
the high buffer gas pressure, which is necessary to keep
the drifting ions in the low-field limit, mass-selected
polyatomic ions cannot be injected from an external

source. This configuration provides the basis for ion
mobility spectrometry, the analytical technique based
on the separation of ions by their mobilities. In ion
mobility spectrometry, the mobility measurements are
performed at atmospheric pressure and the buffer gas is
generally nitrogen or air. fons are usually produced by
a radioactive °3Ni source that produces f-particles. A
complex series of ion-molecule reactions follows the
initial ionization process, ultimately producing analyte
product ions. The ions are usually detected at the end of
the drift tube by a collector plate and an amplifier. With
the high buffer gas pressures employed and because the
apparatus is not constructed to high vacuum standards,
the formation of large ion-molecule clusters, particu-
larly those involving water, is avoided by heating the
drift tube. A variety of ionization techniques have been
employed with ion mobility spectrometry including
laser desorption’® and electrospray ionization.”*

The ion mobility spectrometers that are optimized for
analytical applications are not really suitable for studies
directed at deriving information about the geometries of
polyatomic ions. Dugourd et al?* have recently
described a high-resolution ion mobility apparatus
designed for this task. A schematic diagram is shown in
Fig. 2. Briefly, the apparatus consists of a source region
which is directly coupled to a 63 cm long drift tube. The
source region and drift tube contain helium buffer gas
at a pressure of ~ 500 Torr. The ions are generated by
pulsed laser vaporization or pulsed laser desorption.
After formation, the ions are directed by shaped electric
fields to an aperture in the ion gate that separates the
source region from the drift tube. A concern with this
configuration is that neutral species should not be
allowed to diffuse from the source into the drift tube,
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Figure 2. Schematic diagram of the high resolution ion mobility apparatus at Northwestern University.
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because charge transfer may then occur in the drift tube
and this could distort the measured drift time distribu-
tions. The ion gate consists of a 0.5 cm diameter by 2.5
cm long channel with a uniform electric field along its
length. A flow of helium buffer gas through the ion gate,
from the drift tube into the source region, prevents
neutral species from entering the drift tube, while the
electric field pulls the ions through the ion gate into the
drift tube. The ions then travel along the length of
the drift tube under the influence of a uniform electric
field generated by a stack of isolated rings and a voltage
divider. At the end of the drift tube, some of the ions
exit through a small aperture. They are then focused
into a quadrupole mass spectrometer and at the end of
the quadrupole they are detected. Drift time distribu-
tions are recorded with a multichannel scaler using the
laser pulse as the start trigger. The drift tube can be
heated or cooled so that ion mobility measurements can
be performed as a function of temperature.

At the beginning of this section we mentioned that
ion mobilities were measured by recording the amount
of time it takes for a short packet of ions to travel
across the drift tube. This approach is well suited to
sources using pulsed lasers, such as laser vaporization,
laser desorption and MALDI sources. If the source gen-
erates ions continuously a short pulse of 1ons can easily
be generated by an electrostatic shutter. However, the
duty cycle is generally less than 1% and discarding 99%
of the ions is not a concern if there are enough remain-
ing to perform the mobility measurements in a reason-
able time period. This is often not the case. In 1936,
Bradbury and Neilsen”? described another method for
measuring drift times that employs two electrostatic
shutters at different positions along the length of the
drift tube. The same sine wave is applied to both shut-
ters and the signal is recorded as the frequency of the
sine wave is swept. Maxima in the transmitted current
are observed when the drift time is equal to integral
multiples of the half period of the sine wave. The signal
recorded as a function of frequency is an interferogram.
Hill and co-workers’® have used Fourier transform
techniques to derive the drift time distributions from the
interferograms. If two gates are employed, 25% of the
ions are utilized rather than 1%. It is also possible to
use only a single entrance gate and record both the in
phase and out-of-phase signals using a computer, so
that 50% of the signal is utilized.

MOBILITY CALCULATIONS

Structural information is obtained from ion mobility
measurements by calculating the mobilities for trial
geometries and comparing them with the measured
values. In the low-field limit, where the measured mobil-
ity is independent of the drift field, the mobility is given
by63,75

_ (18m)'72 1+L 2 ze 1 @
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where m is the mass of the ion, m, is the mass of a buffer
gas atom and Q). " is the average collision integral or
collision cross-section. Assuming that there is no align-
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ment in the drift tube, which is a reasonable assumption
for mobilities determined in the low-field limit, then the
average collision cross-section can simply be obtained
by averaging over all possible collision geometries.
Treating the polyatomic ion as a collection of hard
spheres, one for each atom, and assuming hard sphere
interactions between the ion and buffer gas atom, the
average cross-section is obtained by averaging the geo-
metric cross-section over all possible orientations in
space. We shall refer to this as the hard sphere projec-
tion approximation because the geometric cross-section
is simply the area of the shadow cast by the trial
geometry in collisions with the buffer gas. This type of
model was first used by Mack’® in 1925. Since com-
puters were not available, Mack mounted a beeswax
model of the molecule of interest on a two-axis goniom-
eter so that it could be orientated in any direction. The
goniometer was placed between a light source and a
graduated screen and the size of the shadow was deter-
mined systematically for a variety of orientations. The
projection approximation, using computers rather than
beeswax models, has been widely used to calculate
mobilities of polyatomic ions in the last few
years.21:24:26.29.77-79  Recently, Bowers and co-
workers®? have described an extension of this model
that attempts to incorporate long-range interactions in
an approximate way so that mobilities can be calculated
as a function of temperature. In this model the hard-
sphere contact distance is determined from tabulated
collision integrals for atom-atom collisions with a 12—
6-4 potential, so the model is effectively the projection
approximation with a temperature-dependent hard
sphere contact distance.

While it is obvious that the hard sphere projection
approximation ignores the long-range interactions
between the ion and buffer gas, this approach also
ignores all the details of the scattering process between
the polyatomic ion and buffer gas atom. Q. in Eqn
(1) is really a collision integral that should be calculated
by averaging the momentum transfer cross-section over
relative velocity and collision geometry.®*’5 The
momentum transfer cross-section depends on the scat-
tering angle, which is the angle between the incoming
and outgoing trajectory in a collision between the poly-
atomic ion and a buffer gas atom. The projection
approximation ignores all these details. Shvartsburg
and Jarrold®® have recently described an exact hard
spheres scattering model which treats the scattering cor-
rectly within the hard sphere limit and they have shown
that the projection approximation significantly under-
estimates the collision integral for some geometries.

The long-range interactions between the buffer gas
and the ion should also not be ignored, but accounting
for them correctly is not trivial. First an effective poten-
tial, consisting of a sum of interactions between the
buffer gas atom and all the atoms in the polyatomic ion,
must be defined and then trajectories are run within this
potential to determine the scattering angles. Many tra-
jectories must be run to average over the impact param-
eter, the relative velocity and the collision geometry.
Calculations along these lines have recently been
reported by Mesleh et al.,®! employing a potential con-
sisting of a sum of two-body Lennard-Jones inter-
actions and ion-induced dipole interactions. Table 1
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Table 1. Collision integrals calculated for (Cgo)z, (Coo)iss
BPTI and cytochrome ¢ from trajectory calculations,
the exact hard spheres scattering model and the pro-
jection approximation*

Cross section

(A%
Exact hard
Trajectory spheres Projection
Compound calculations scattering approximation
(Ceo)2 226 (1.00) 225 (0.99) 216 (0.96)
{Ceo)ra 813 (1.00) 787 (0.97) 683 (0.84)
BPTI 927 (1.00) 935 (1.01) 767 (0.83)
Cytochrome ¢ 1334 (1.00) 1339 (1.00) 1075 (0.81)

®* The quantities in parentheses show the collision integral divided
by the collision integral determined from trajectory calculations.

shows collision integrals calculated for (Cg,),, icosahe-
dral (Cqo);3. BPTI and cytochrome c using trajectory
calculations, the exact hard spheres scattering model
and the projection approximation. The values deter-
mined using the projection approximation are up to
20% smaller than those obtained from trajectory calcu-
lations. Clearly, the projection approximation is inade-
quate for calculating the collision integrals of large
polyatomic ions. Collision integrals determined from
the exact hard spheres scattering model are within a few
percent of those obtained from trajectory calculations.
This indicates that the main deficiency with the projec-
tion approximation is that it ignores the details of the
scattering process. The difference between the values
determined from the exact hard spheres scattering
model and from trajectory calculations result from
effects of the long-range potential between the buffer gas
atom and the polyatomic ion.

It should be obvious from the preceding discussion
that the evaluation of mobilities for comparison with
experimental data is not a solved problem. Also, with
the recent improvements in resolution, more isomers are
being resolved with more subtle structural differences,
placing even more stringent demands on the theoretical
methods. All the methods described above assume a
rigid geometry and inelastic collisions. Lin et al.*? have
considered the effects of rotation of the polyatomic ion
during a collision with a buffer gas atom. For a helium
buffer gas the effect is small. Book et al.”® have reported
a study of the effects of vibrational motion on mobilities
calculated using the projection approximation. This was
done by averaging over an ensemble of geometries gen-
erated by molecular dynamics simulations. Bowers and
co-workers32-33 have used a similar approach in their
studies of ethylene glycol oligomers and bradykinin. So
far, the effects of inelastic collisions have not been con-
sidered. A full molecular dynamics treatment is required
to examine whether inelastic collisions significantly
affect the mobilities. The approach to calculating mobi-
lities described above is based on the belief that it is
possible to calculate reliable values from the existing
theoretical methods, if the problem is treated with suffi-
cient rigor. Wessel and Jurs®* employed a different
approach to predict mobilities. They used multiple
regression analysis and neural networks to predict the
mobilities from structural information and a library of
measured mobilities. Here the neural network is trained
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to produce the collision integral from structure-
property relationships.

APPLICATIONS

Here we briefly consider some of the recent applications
of ion mobility measurements. We will start by describ-
ing some work performed on atomic clusters and then
review some of the recent studies of biomolecules. The
latter focuses mainly on the conformations, unfolding
and refolding of multiply charged protein ions in the
gas phase.

Carbon and metal-containing carbon clusters

Carbon forms directional covalent bonds in a variety of
different bonding configurations. For these reasons,
carbon clusters display many different isomeric forms.
Some of these isomers, in particular the chains and
small monocyclic rings, have been studied for a number
of years®® and much is now known about fullerenes. Ion
mobility measurements were first performed for carbon
clusters by Bowers and co-workers.?° Their studies con-
firmed the existence of chains and monocyclic rings for
the smaller clusters and revealed the presence of a
several different ring isomers for the larger ones. Figure
3 shows drift time distributions recorded for Cj, and
LaCj, produced by laser vaporization of graphite and
graphite doped with La,0,, respectively. Figure 3(a)
and (b) show distributions measured for CJ, at injection
energies of S0 and 225 eV, respectively. The drift time
distributions that are recorded at 50 eV and below are
independent of injection energy, indicating that the 50
¢V distribution reflects the isomer distribution produced
by the source. Four distinct peaks are present. These
peaks have been assigned to a fullerene at ~600 ps, a
graphitic sheet at ~800 us, bicyclic ring isomers at
~1100 ps and a monocyclic ring at ~1200 ps. It is
believed that the bicylic ring is made by clipping
together two smaller monocyclic rings. The small shoul-
der at ~900 ps in Fig. 3(a) is probably due to tricyclic
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Figure 3. Drift time distributions recorded for (a) and (b) Cj,
and (c) and (d) LaC3g at 50 eV (top) and 225 eV (bottom).
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rings, which become more abundant for larger clusters.
When the injection energy is increased the ions are col-
lisionally heated as they enter the drift tube and the
isomer distribution changes. For C34 the bicylic and tri-
cylic rings disappear and the abundance of the mono-
cyclic ring increases [compare Fig. 3(a) and (b)].
Isomerization of the bicyclic and tricyclic rings to a
monocylic ring is driven by strain relief.2? The carbon
atoms in the rings are sp® hybridized and the bicyclic
and tricyclic rings are highly strained. It is clear from
the results shown in Fig. 3 that the amount of Cj, ful-
lerene present does not increase significantly as the
injection energy is raised. If the injection energy is
raised further the monocyclic ring begins to dissociate
to smaller ring fragments. Hence small carbon rings do
not convert efficiently into fullerenes when collisionally
heated. However, for larger clusters the ring isomers do
convert into fullerenes. The efficiency of this process
increases with increasing cluster size and reaches ~ 80%
for C¢,.2° These ion mobility and annealing results
suggest that the mechanism of fullerene formation
involves ring coalescence, followed by isomerization to
the fullerene geometry when the rings are large
enough.?’

There has been interest in metallofullerenes since the
discovery of fullerenes.®® Figure 3(c) and (d) show drift
time distributions recorded for LaCj3, with injection
energies of 50 and 225 eV, respectively. The same four
isomers are present for LaC3, as for CJ,, although their
relative abundances are different. However, as the injec-
tion energy is increased the ring isomers disappear as
they convert into an LaCjg fullerene and graphite sheet.
This does not occur for CJ,, so the metal atom seems
to promote the isomerization of the ring isomers into
the fullerene and graphite sheet. Careful comparison of
the mobilities of the C§, and LaCj, fullerenes shows
that they have almost exactly the same mobilities, which
indicates that the metal atom is inside the cage or endo-
hedral for LaC3,. The metal atom is endohedral for all
LaC,” fullerenes with n > 34, but smaller LaC,* ful-
lerenes have a non-endohedral metal atom, because the
metal atom no longer fits inside the cage. For some
metallofullerenes, such as NbC,* fullerenes with an odd
number of carbon atoms, the ion mobility measure-
ments indicate that the metal atom is networked into
the carbon cage.?”

Bowers and co-workers®® have shown that the
isomers present for carbon cluster anions are similar to
those present for the cations, except the relative abun-
dances are different. For example, the linear chain per-
sists to much larger sizes for the anions, a result that
has been attributed to stabilization of the carbene ends
of the chain by the extra electrons in the anion. Carbon
cluster anions have recently been examined using high-
resolution ion mobility methods.’® Figure 4 shows a
high-resolution drift time distribution recorded for C,,.
In this distribution, the feature at 64 ms is due to a
linear chain, the three peaks at ~ 57 ms have drift times
close to those expected from previous low-resolution
measurements for a monocyclic ring, while the small
features at ~ 50 ms have drift times expected for bicyclic
rings. This distribution can be compared with that
shown in Fig. 3 for CJ,, where the monocyclic ring at
~ 1200 pus and bicyclic ring at ~1100 ps are only par-
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Figure 4. Drift time distribution recorded for C;, with the high-
resolution apparatus. The distribution was recorded with a helium
buffer gas pressure of ~500 Torr and a drift voltage of 10 kV.

tially resolved. The existence of several different bicylic
ring isomers was anticipated because there are a
number of plausible bicyclic ring geometries. However,
the presence of several isomers in the monocyclic ring
region is a surprise, since there can only be one mono-
cyclic ring. The isomer at ~ 56 ms appears to be the real
monocyclic ring. The geometries of the other isomers
are still under investigation.

Sodium chloride nanocrystals

Alkali metal halide clusters are interesting model
systems because it appears that they adopt the bulk
face-centered cubic (fcc) crystal structure at very small
cluster sizes.”*~%* The principle evidence for the bulk-
like geometries is the presence of magic number clusters
corresponding to complete cuboid geometries. For
example, for (NaCl),Cl™ clusters magic numbers at
(NaCl),,C17, (NaCl),,C1™ and (NaCl),,Cl~ have been
attributed to completed cuboids with the dimensions
3x3x3, 5%x3x%x3 and 5x5x3. Here, 3 x3 x 3
means a cube with the dimensions 3 atoms x 3
atoms x 3 atoms, to give a total of 27 atoms, which is
the number of atoms in (NaCl),;Cl™. Figure 5 shows
the high-resolution drift time distribution measured for
the 5 x 5 x 3 magic number cluster, (NaCl),,Cl .
Three features are present in the drift time distribution.
These have been assigned by comparing their mobilities
to mobilities calculated for geometries optimized using
an ionic potential.”> The middle peak, at 138 ms, has
been assigned to the complete 5 x 5 x 3 cuboid, while
the other peaks have been attributed to geometries with
an incomplete face. The peak at 135 ms has been assign-
ed to an incomplete 5 x 4 x 4 geometry and that at 145
ms to an incomplete 6 x 5 x 3 geometry. The distribu-
tion shown in Fig. 5 was recorded with the drift tube at
5°C. If the drift tube temperature is increased to slightly
above room temperature the two features assigned to
the incomplete cuboids convert into the complete
5 x 5 x 3 geometry, which indicates that this is the
lowest energy geometry.

Figure 6 shows drift time distributions recorded for
(NaCl);sCl™ at 7, 33 and 67°C. The three isomers
present at low temperature have been assigned to an
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Figure 5. Drift time distribution recorded for (NaCl);,Cl™ with
the high-resolution apparatus. The distribution was recorded with
a helium buffer gas pressure of ~500 Torr, a drift voltage of 10 kV
and a drift tube temperature of 5 °C. The three peaks present have
been assigned to an incomplete 5 x4 x4, a complete 5 x5 x 3
and an incomplete 6 x5 x 3 cuboid geometries. The structures
shown in the figure were optimized using an ionic potential.

incomplete 5 x 5 x 3, an incomplete 5 x 4 x 4 and an
8 x 3 x 3 with a single defect. As the temperature is
raised the 8 x 3 x 3 and 5 x 3 x 3 isomers convert into
the 5 x 4 x 4 geometry. The drift time distribution in
Fig. 6 measured at 33°C shows intensity between the
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Figure 6. Drift time distributions recorded for (NaCl) ;5Cl~ at drift
tube temperatures of 5, 33 and 67 °C. The three peaks present
have been assigned to an incomplete 5 x5 x 3, an incomplete
5 x4 x4 and an incomplete 8 x3 x3 cuboid geometries. The
structures shown in the figure were optimized using an ionic
potential.
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peaks assigned to the 8 x 3 x 3 and 5 x 4 x 4 geome-
tries. This is due to isomerization of the 8 x 3 x 3 to
the 5 x 4 x 4 at different places along the length of the
drift tube. The amount of time that the ions spend in
the drift tube can be varied by varying the drift voltage
and the drift time distributions can be analyzed to
obtain the isomerization rates.’® Rate constants have
been determined in this way as a function of tem-
perature for a number of the structural transitions in
(NaCl),Cl™ clusters. Arrhenius activation energies for
the transitions, determined from the rate constants, are
0.3-0.6 eV. Some of these structural transitions, such as
the 8 x 3 x 3 to 5 x 4 x 4 transition of (NaCl);sCl™,
involve the relocation of close to half the atoms in the
cluster, so it is remarkable that the activation energies
are so low. The low activation energies suggest that the
structural transitions occur through a sequence of
surface diffusion steps, rather than by a single concerted
step.

Protein ions in the gas phase

Intramolecular interactions, such as hydrogen bonds
and van der Waals contacts and solvent interactions,
both hydrophobic and hydrophilic, contribute to the
free energy of a protein in solution. However, the rela-
tive importance of these factors in determining the
solution-phase conformation is still the subject of con-
troversy. Studies of unsolvated proteins in the gas phase
can provide direct information about their intramolecu-
lar interactions. Ion mobility measurements have
recently been used to examine the gas-phase conforma-
tions of both peptides and proteins. Electrospray ioniza-
tion produces proteins ions in a distribution of charge
states and the charge state distribution depends on the
acidity of the solution. Positive ions result mainly from
protonation of basic residues while negative ions are
produced by deprotonation of acidic residues. Figure 7
shows drift time distributions for the + 7 charge state of
cytochrome ¢ measured as a function of the injection
energy. The distributions are plotted against a reduced
time-scale obtained by multiplying the true time-scale
by the charge state. This makes it easier to compare
distributions measured for different charge states. The
ions for these studies were produced by electrospraying
an unacidified solution where the protein is in its native
form. The dashed line in Fig. 7 shows the drift time
expected for the native conformation of cytochrome
¢.°798% At low injection energies the peak in the drift
time distribution is at slightly shorter times than
expected for the native conformation, indicating that
the protein is more compact in the gas phase than in
solution. In solution, the solvent provides an effective
force field which prevents globular proteins from
packing tightly. Polar side-chains extend out into the
solvent to maximize their interactions and the protein
contains cavities large enough to accommodate water
molecules. In vacuum, intramolecular interactions make
the side-chains collapse on to the protein surface and
the protein packs more tightly. According to molecular
dynamics simulations, the radius of gyration of BPTI
decreases by ~5% on going from solution to
vacuum.®®'1%% Thus the feature observed at low injec-
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tion energy for the +7 charge state of cytochrome c is
attributed to contracted or collapsed native conforma-
tions. Note that this peak is broader than expected for a
single conformation, indicating that a number of con-
formations with similar mobilities are present. As the
injection energy is raised the distribution shifts to
longer times and a number of intermediates are resolved
at different injection energies. Two peaks remain for
injection energies >1050 eV. Clearly the +7 charge
state unfolds to less compact conformations when it is
collisionally heated. Note that after being collisionally
heated, the protein ions rapidly reach thermal equi-
librium with the buffer gas because they undergo > 10°
collisions cm™! as they travel across the drift tube.
However, because of the rapid cooling that occurs, the
conformations observed at high injection energies may
not be the lowest free-energy conformations at the tem-
perature of the buffer gas.

Cross-sections can be derived directly from the mea-
sured drift time distributions using
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Figure 8 shows a plot of the cross-sections of the main
features present in the drift time distributions of the +3
to 420 charge states of cytochrome c. The +6 to + 10
charge states were prepared by electrospraying an
unacidified solution. The +11 to +20 charge states
were obtained from a solution acidified with 2.5% acetic
acid. The lower charge states, +3 to +5, were prepared
by adding a base to the desolvation region to reduce the
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Figure 8. Plot of the collision cross-sections for the main features observed in the drift time distributions for the +3 to +20 charge states of
cytochrome c¢. The dashed lines show cross-sections calculated for the native conformation and an extended string.
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charge by proton stripping reactions. The filled points
in the figure show cross-sections for features observed at
high injection energies, while the open points show fea-
tures observed at lower injection energies. The dashed
lines show cross-sections calculated for the native con-
formation and an extended string obtained by setting
most ® and W angles to 180°. For the low charge states
the measured cross-sections are slightly smaller than the
cross-section calculated for the native conformation.
For the +6 to +8 charge states a structural transition
occurs. While conformations, slightly more compact
than the native conformation can be prepared for these
charge states by electrospraying an unacidified solution,
these conformations unfold to less compact ones when
collisionally heated. For higher charge states the cross-
sections increase with charge and approach the value
calculated for the extended string. The unfolding tran-
sition that occurs as the charge is increased results from
Coulomb repulsion. Intramolecular interactions, hydro-
gen bonds and van der Waals contacts, hold the protein
in a compact, folded conformation. However, as the
charge increases, Coulomb repulsion overcomes the
attractive intramolecular interactions and the protein
unfolds. Coulomb repulsion is more important for pro-
teins in the gas phase than in water, because water has a
high dielectric constant.

More information about the stabilities of the
observed conformations can be obtained from measure-
ments performed as a function of drift tube tem-
perature.'®! For the +5 charge state only a single
feature is observed in the drift time distributions from
room temperature up to 300°C and the cross-section
for this feature varies only slightly with temperature.
Thus temperatures as high as 300°C are not enough to
unfold the +5 charge state of cytochrome c. Cyto-
chrome ¢ unfolds at a much lower temperature in solu-
tion.!°2  This demonstrates that the folded
conformations of a gas-phase protein can be much more
stable than in solution. However, the results described
above show that Coulomb repulsion destabilizes folded
conformations in the gas phase. Figure 9 shows drift
time distributions for the +7 charge state of cyto-
chrome ¢ measured as a function of the drift tube tem-
perature. The dashed line shows the distribution
recorded at room temperature with a high injection
energy (2100 eV) while the other distributions were
recorded with a low injection energy (350 eV). As the
temperature is raised the +7 charge state unfolds, and
at 200°C there is a single, relatively narrow peak at the
same position as the smaller peak in the high injection
energy distribution (shown by the dashed line). Between
200 and 300°C a further structural transition occurs
and the peak moves to the position of the more
unfolded conformation in the high injection energy dis-
tribution. These thermal unfolding transitions provide
an excellent test of the force fields used in molecular
dynamics simulations of proteins.

By introducing a base in the desolvation region it is
possible remove protons from highly protonated cyto-
chrome ¢ ions and form the low charge states, +3 to
+5. These charge states have compact conformations
even when they are produced from high charge states
that were generated by electrospraying an acidified
solution where cytochrome ¢ is denatured. The drift
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Figure 9. Drift time distributions recorded for the +7 charge state
of cytochrome ¢ as a function of drift tube temperature. The drift
time-scale has been converted into a cross-section scale so that
distributions recorded at different temperatures can be easily com-
pared. The dashed line shows the distribution measured at high
injection energy (2100 eV). The other distributions were recorded
with a low injection energy (350 eV).

time distributions for the high charge states indicate
that they are unfolded. Thus the folded conformations
observed for the low charge states must result from
refolding in the gas phase. The cross-sections for these
refolded conformations are similar to the cross-sections
for the compact conformations observed for the +6 to
+8 charge states from an unacidified solution.
However, this should not be taken to indicate that the
refolded conformations have the native structure. The
native conformation is expected to be stable in the gas
phase because it has a large number of hydrogen bonds
and van der Waals contacts. However, it is probably
not the lowest energy gas-phase conformation. Further-
more, the native conformation is probably not
kinetically accessible without a solvent.

Folding processes similar to those described above
for cytochrome ¢ have also been observed for the low-
charge states of apomyoglobin. The +6 charge state of
apomyoglobin is particularly noteworthy because it
provides a dramatic example of an activation barrier for
gas-phase protein folding.’® Drift time distibutions
measured for the +6 charge state of apomyglobin are
shown in Fig. 10. The ions were produced by proton
stripping of high charge states generated by electro-
spraying an acidified solution. At low injection energies
a partially folded conformation is observed. As the
injection energy is raised the distribution shifts to
shorter drift times as the protein refolds. The feature
observed at low injection energies is more compact than
its high charge state precursors and so it is clearly an
intermediate in the folding process and there must be an
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Figure 10. Drift time distributions recorded for the +6 charge
state of apomyoglobin as a function of injection energy. The ions
were produced by proton stripping higher charge states with a
base in the desolvation region. The dashed line shows the drift
time expected for the native conformation of myoglobin.

activation barrier separating the partially folded confor-
mation from the completely refolded conformation.
This activation barrier probably results from Coulomb
interactions. As the protein folds the Coulomb energy
must increase, but this increase is offset by the attractive
intramolecular interactions in the compact conforma-
tion. However, Coulomb repulsion is a long-range inter-
action and during the folding process the Coulomb
energy will increase before it can be offset by the shorter
range intramolecular interactions, leading to a
Coulomb barrier to protein folding.

Unfolding transitions induced by Coulomb repulsion,
similar to that observed for the intermediate charge
states of cytochrome ¢, have also been observed with
apomyglobin and ubiquitin. On the other hand, BPTI
does not show an unfolding transition. BPTI is a small
protein, 58 residues, which has three disulfide bridges
that partly lock its three-dimensional structure in place.
BPTI is very resistant to thermal, acid and base
denaturation. The other three proteins mentioned
above, cytochrome ¢, apomyoglobin and ubiquitin, do
not contain disulfide bridges and so they are free to
adopt unfolded gas-phase conformations as the charge
increases. Lysozyme contains four disulfide bridges and
drift time distributions have been recorded for this
protein in disulfide-intact and disulfide-reduced
forms.'°® Elecrospray ionization of the disulfide-intact
solution favors low charge states (+8 to + 10) whereas
the disulfide-reduced solution favors high charge states
(+10 to +18). Figure 11 shows drift time distributions
for the +6, +8 and +10 charge states of disulfide-
intact (left) and disulfide-reduced lysozyme (right).6°
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Figure 11. Drift time distributions recorded for the +6, +8 and
+10 charge states of lysozyme that were electrosprayed from
disulfide-intact (left) and disulfide-reduced (right) solutions. The
+8 and +10 disulfide-intact ions were obtained by direct electro-
spray ionization. All other charge states were obtained by proton
stripping higher charge states with a base in the desolvation
region.

The disulfide-intact +8 and +10 charge states were
obtained by direct electrospray ionization whereas the
other charge states were formed by proton stripping
reactions in the desolvation region. Both disulfide-
reduced and disulfide-intact lysozyme unfold as the
charge increases, but the conformations observed for
the disulfide-reduced are generally more unfolded than
those observed for the disulfide-intact form. For the +6
charge states both disulfide-intact and disulfide-reduced
lysozyme have compact folded conformations with
essentially the same cross-sections, although this does
not necessarily indicate that they have the same confor-
mations.

Electrospray ionization can also be used to produce
negatively charged protein ions where the charge results
from deprotonation of acidic residues. Comparison of
the conformations observed for positively and nega-
tively charged protein ions can provide information
about how the location of the charge sites (determined
by the numbers and positions of basic and acidic amino
acids) affects the gas-phase conformations.!°* For cyto-
chrome ¢ positive ions up to +20 can be produced
whereas for negative ions the highest charge state
observed is —12. This difference can be understood by
considering the number of basic and acidic residues.
Cytochrome ¢ has 22 basic lysine and arginine residues
but only 12 acidic asparginine and glutamic acid resi-
dues. The basic and acidic residues are approximately
equally distributed along the primary sequence. Figure
12 shows cross-sections determined for the largest fea-
tures observed at high injection energies for the —4 to
—12 and +3 to 420 charge states of cytochrome c.
For the high- and low-charge states, the cross-sections
for the negatively charged ions are nearly identical with
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Figure 12. Cross-sections measured for negatively charged (deprotonated) and positively charged (protonated) forms of cytochrome c.
Only data for the most abundant feature in the drift time distributions recorded at high injection energies are plotted. The dashed lines show
that low and high charge states have similar cross-sections. Intermediate charge states such as the +7 charge states have significantly

different cross-sections.

those obtained for their positively charged counterparts.
The primary differences are observed for the interme-
diate charge states where, as discussed above, repulsive
Coulombic interactions are comparable to the attractive
intramolecular interactions that hold the protein in a
folded conformation. For these charge states the loca-
tion of the charges apparently plays a role in determin-
ing which gas-phase conformations dominate the ion
mobility distribution. For example, the dominant con-
formation observed for the —7 charge state is signifi-
cantly more folded than the dominant conformation
observed for the +7 charge state. The unfolding that
occurs as the charge state increases is somewhat analo-
gous to acid denaturation of a protein in solution. In
solution, the compact native state is stable over a
restricted pH range near 7 and as the pH is increased or
decreased, it unfolds.!®®

H-D exchange has recently been used to examine
peptide!®® and protein ions****1°71%% in the gas
phase. The basic assumption behind these studies is that
the fraction of exchangeable hydrogens that undergo
H-D exchange can provide a measure of the accessible
surface area, which in turn can be used to deduce struc-
tural information. This information may complement
that obtained from ion mobility measurements. Figure
13 shows the results of some H-D exchange studies of
the +8 charge state of horse heart cytochrome ¢. Horse
heart cytochrome ¢ has 198 exchangeable hydrogens, of
which 144 are exchanged by the native conformation in
a neutral solution. Figure 13 shows drift time distribu-
tions and mass spectra measured for the +8 charge
state with D,O introduced into the drift tube.’® The
dashed line shows a portion of the mass spectrum
obtained in the absence of D,O. The plots in the upper
half of the figure show results obtained with a low injec-
tion energy where the +8 charge state of cytochrome ¢
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is predominently in compact conformations. The
maximum average mass shift observed under these con-
ditions corresponds to the exchange of around 45
hydrogens. The lower half of the figure shows results
obtained at a high injection energy where the protein is
in a partially unfolded conformation. The mass spec-
trum indicates an average exchange level of ~ 60 hydro-
gens. The higher exchange level observed for the
partially folded conformation is in line with expecta-
tions. However, the exchange levels are much lower
than for the native conformation in solution. Further-
more, the exchange levels for the extended conforma-
tions of the +8 to +18 charge states are all
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Figure 13. Drift time distributions (left) and mass spectra (right)
recorded for the +8 charge state of horse-heart cytochrome ¢
using a buffer gas containing 0.3 Torr of D,0. The data in the
upper half of the figure were recorded using an injection energy of
960 eV and those in the lower half with an injection energy of 240
eV. The dashed line shows the mass spectrum recorded without
D,0 in the drift tube.
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approximately the same, ~ 60, while the ion mobility
measurements show that the average cross-section
increases substantially over this range. It appears that
the H-D exchange levels are insensitive to subtle
changes in conformation for different charge states of
cytochrome c¢. The observation that the higher charge
states have a constant exchange level is in agreement
with previous H-D exchange studies for cytochrome ¢
performed by McLafferty and co-workers using Fourier
transform ion cyclotron resonance (FT-ICR) spectrom-
etry.>>4° However, the exchange levels in drift tube
experiments were smaller than in the FT-ICR studies.
Studies of gas-phase proteins provide information
about the intramolecular interactions that are impor-
tant in defining their solution-phase conformations.
However, gas-phase studies also provide new
opportunities to study the solvation effects that also
play an important role in determining the conformation
in solution. Starting with an unsolvated protein in the
gas phase it is in principle possible to hydrate it sequen-
tially and study the hydration process one water mol-
ecule at a time. Thermodynamic information can be
obtained from equilibrium constant measurements for
the hydration reactions. Kebarle and co-workers'®®
have examined the hydration of a few small polypep-
tides. Recently, Woenckhaus and Jarrold’®! have
reported measurements of the free energy changes for
the adsorption of the first few water molecules on the
unfolded +7 charge state of cytochrome ¢ and the
compact, refolded +5 charge state. The equilibrium
constant measurements were performed by adding
water vapor to the helium buffer gas. With water vapor
pressures of around 1 Torr at room temperature, the
mass spectra showed no evidence for water adsorption
and it was necessary to cool the drift tube to study the
hydration reactions. Free energy changes at 271 K were
determined for adsorption of the first nine water mol-
ecules on the refolded + 5 charge state and the first five
water molecules on the unfolded + 7 charge state. The
free energy changes are shown in Fig. 14, where they are
compared with the free energy changes for the adsorp-
tion of the first few water molecules on GlyH™ and
H,07.19%110 Surprisingly, the unfolded conformation
(+7 charge state) has smaller initial free energy changes
than the refolded conformation (+5 charge state).
However, the free energy changes for initial hydration
of both the unfolded and refolded conformations of
cytochrome ¢ are substantially smaller than the free
energy changes for initial hydration of H;O" and
GlyH". The free energy changes for the adsorption of
the first water molecule on (Gly),H* at 293 K are —41,
37, —28 and —24 kJ mol ! for n = 1-4.7°° The sub-
stantial differences in the free energy changes between
n =2 and 3 has been attributed to cyclization of the
larger polypeptides through hydrogen bonds to carbon-
yl oxygens. This intramolecular charge ‘solvation’
decreases the free energy change for adsorption of the
first water molecule by effectively shielding the charge.
The small free energy changes for the adsorption of the
first few water molecules on to cytochrome ¢ indicates
that the charge is very effectively shielded, presumably
by interactions with a number of carbonyl oxygens.
However, it is still not clear why the free energy changes
for the unfolded +7 charge state are significantly
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Figure 14. Free energy changes for adsorption of the first few
water molecules on the refolded +5 charge state and the unfolded
+7 charge state of bovine cytochrome c. Free energy changes for
adsorption of water on H;O0* and GlyH* are shown for compari-
son. The dashed line shows the free energy change for adsorption
on bulk water.

smaller than those for the compact refolded + 5 charge
state. This may indicate that the charge is more effec-
tively shielded in the unfolded + 7 charge state, or the
incorporation of some of the adsorbed water molecules
as structural water molecules in the folded +5 charge
state.

Oligonucleotides

Because of their electronegative phosphate backbone,
DNA and RNA can most readily be electrosprayed
from basic solutions to yield negative ions. Figure 15
shows drift time distributions measured for a 10-residue
oligonucleotide comprised entirely of thymine bases
(T,o)- Distributions are shown for the —2 to —6 charge
states of [T;, — nH*]"", where n is the number of dep-
rotonated sites. There is a sharp unfolding transition
between the —3 and —5 charge states which presum-
ably results from Coulomb repulsion. Some typical
structures obtained for the T,, oligonucleotide using
the Insight IT molecular modeling software are shown in
Fig. 15 for the —2, —4 and —6 charge states. The
average cross-sections obtained by sampling a large
number of different structures depend on the location of
the charges. For the 10-unit homopolymer studied here,
which is expected to be deprotonated along the nine
phosphodiester linkages, the number of possible com-
binations of assigning charges to sites is given by
91/[n}9 — n)!]. From comparisons of collision cross-
sections for modelling results with our experimental
data it appears that the transition region is best
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Figure 15. Drift time distributions for the —2 to —6 states of T;,.
The geometries shown for the —2, —4 and —6 charge states were
obtained from Insight il molecular modeling software.

described when deprotonation sites are dispersed along
the entire backbone rather than placed on adjacent
sites. ! 1!

FUTURE PROSPECTS

It is clear from the preceding description of some of the
recent applications of ion mobility measurements that
this area has developed rapidly in the last few years. In
particular, the studies of biomolecules have only just
begun and ion mobility measurements will be a rich
source of information about the conformations, folding
and refolding of these species in the next few years. The
combination of ion mobility measurements with electro-
spray ionization essentially removes the limit on the
mass of the species that can be studied and so these

methods can be extended to even larger biological
systems. An effort is currently being made to perform
mobility measurements for intact viruses. The order of
magnitude improvement in the resolution available
from ion mobility measurements has recently revealed
many more structural isomers for atomic clusters. High
resolution ion mobility measurements for protein ions
are currently under way. A further order of magnitude
improvement in the resolution is desirable. However,
this will be exceedingly difficult to realize simply by
extending the current methods, so a new approach must
be found if the resolution is to be significantly
improved. Ion mobility measurements are basically a
separations technique which can be combined with
other methods to provide information about the resolv-
ed geometries. For example, measurements of the
propertics of atomic clusters as a function of the
number of atoms are not particularly valuable if a dis-
tribution of isomers are present. Measurements need to
be performed for the individual isomers. This is also
true for biomolecules. The first studies along these lines
have examined the chemistry of the separated geome-
tries. It would be useful to combine the ion mobility
measurements with a spectroscopic technique that
would provide structural information. This is desirable
because the structural information obtained from a
mobility measurement is often ambiguous. However, it
is difficult to find a technique that is compatable with
low signal intensities available after separation of the
different geometries. Photoelectron spectroscopy using
a magnetic bottle spectrometer has high sensitivity and
efforts are currently under way to record photoelectron
spectra for the isomers resolved in the ion mobility
measurements.
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